# reset all previously defined varibles
%reset -f
# import everything from sympy moduleb
from sympy import *
# pretty math formatting
init_printing() # latex
x,y,z = symbols('x y z')
t = symbols('t')
Evaluate the line integral along the parabola from to .
x = t
y = 2*sqrt(t)
f = y
s = sqrt( diff(x,t)**2 + diff(y,t)**2 )
# integration
integrate(f*s,[t,3,24])
Find the work done by the vector field in moving a particle along the helix from the point to .
Note:
x = cos(t)
y = sin(t)
z = t
F = [x**2 + y**2 + z**2 , 0 , 0]
integrate(
F[0]*diff(x,t) + F[1]*diff(y,t) + F[2]*diff(z,t),
[t,0,4*pi]
)
Evaluate along the arc of the circle in the first quadrant from to .
x = cos(t)
y = sin(t)
F = [2*x*y, x**2 - y**2]
integrate(
F[0]*diff(x,t) + F[1]*diff(y,t),
[t,0,pi/2]
)
Prove that is a conservative force field. Hence find the work done in moving an object in this field from point to .
If a vector field is conservative then
# reset variables from previous examples
x,y,z = symbols('x y z')
def curl(F):
c1 = diff(F[2],y) - diff(F[1],z)
c2 = diff(F[0],z) - diff(F[2],x)
c3 = diff(F[1],x) - diff(F[0],y)
return [c1,c2,c3]
F = [(y**2 *cos(x) + z**3), 2*y* sin(x) - 4. , 3*x*z**2 + z ]
curl(F)
Zero curl implies conservative vector field.
Evaluate over the triangle with vertices , , and .
x,y = symbols('x y')
integrate(
integrate(x**2 + y**2, [x,y,2-y]),
[y,0,1])
Evaluate
over the region and .
x,y = symbols('x y')
# does not work in one shot
integrate((x + 2*y)**(-Rational(1,2)), [x, y**2+1, 1+2*y])
#manually simlipy one radical
integrate(2*sqrt(4*y + 1) - 2*(y+1),[y,0,2])