
FVM implementation of NS Equation discretization in OpenFoam

Ajit Kumar
Shiv Nadar University

Email: ajit.kumar@snu.edu.in

May 18, 2018

1 Navier Stokes Equation and Finite Volume discretized equations

This notes explains OpenFoam implements two of the most widely used Finite Volume discretization
of Navier Stoke’s Equation: PISO & SIMPLE. The theory is picked up from Prof. Hrvoje Jasak’s
Phd thesis [1]. Since he is the key developer of foam-extend, I will walk through the pisoFoam and
simpleFoam code as implemented in foam-extend-4.0.

Incompressible Navier Stokes equation is given by a pair of partial differential equations

∇ · ~u = 0, (1)
∂~u

∂t
+∇ · (~u~u)−∇ · (ν∇~u) = −∇p (2)

in field variables ~u and p which represent velocity and normalized pressure (pressure divided by
fluid-density) field respectively. Eq.(1) represents conservation of mass where as Eq.(2) represents
conservation of momentum. The first term in Eq.(2) will vanish for steady state problems. The
symbol ν = νf + νT is fluid viscosity plus turbulent viscosity. For laminar flows, νT = 0, where as
in turbulent flows νT is calculated by solving additional equations such as k − ω, k − ε, etc.

Lets assume the flow domain is divided into N number of cells, and we are interested in finding
fluid velocity ~ui and pressure pi at the centroid of each cell, i ∈ {1, 2, 3, ..., N}. Lets formally
assemble these discrete variables into two big vector U and p:

U =


~u1
~u2
...
~uN

 p =


p1
p2
...
pN


In finite volume method, a discrete approximation of Eq.(1) and (2) is obtained by integrating

each equation over every cell, occasionally transferring cell volume integration to cell boundary
integration (using divergence theorem), and then using various interpolation schemes to approximate
these integrals in terms of the discrete variables U and p.

If we try to solve for U and p simultaneously, we come across linear equations which is not
suitable for iterative linear solvers (See [2] section 15.1). To overcome this problem, algorithm like
SIMPLE and PISO were proposed in which we do not solver for U and p simultaneously, but rather
solved in a "segregated" fashion.

1



Before we start taking about SIMPLE and PISO, let me introduce one intermediate variable
which may not play a huge role in abstraction of Navier Stokes equation but appears often in
OpenFoam implementation of SIMPLE and PISO. It is the cell faces interpolation of fluid velocity,
Upf . This is an intermediate variable and lets assume that we get a matrix M is known which
maps U to Uf .

Uf =MU

Because of divergence theorem, the finite volume form of continuity equation is written in terms
of face centered fields. Momentum equations are discretized in terms of cell centric variables, and
split into the diagonal and off-diagonal components to simplify the discussion of consistency and
convergence of iterative schemes. OpenFoam assumes a discrete form of Equations (1) and (2) to
have the form

C

=Uf︷︸︸︷
MU = 0 (3)

AU− [L(U)U+X] = −Dp (4)

Here L(U) is matrix which depends on U (non linear because convection term in non-linear),
X is known vector (coming from discretization of time derivative), A and D are known vectors of
suitable orders. Eq. (3) is a discrete version of the continuity equation which essentially means that
net volume flux across each cell is zero:

∑
faces in cell

Uf · Sf = 0, for all cells

Eq. (4) is a discrete version of the momentum equation. As mentioned earlier, solving Eqs. (3) and
(4) is problematic because the resulting coefficient matrix is not suitable for iterative solver (See [2]
section 15.1, try Exercise (1).

Both SIMPLE and PISO are iterative method and at each will involve solving for Un+1 and
pn+1 assuming U0,U1, ...Un and p0,p1, ...pn are known. Here the superscript denote the time step
or iteration step.

2 PISO and its OpenFoam implementation

As mentioned earlier, for each time step in PISO loop we assume U0,U1, ...Un and p0,p1, ...pn are
known, and we aim to solve for Un+1 and pn+1. We do this by first finding an intermediate U∗

using a so called momentum predictor step followed by PISO corrections.

2.1 Momentum predictor

In this predictor step, presently known values of velocity and pressure: Un, pn, are used to construct
the coefficient L(Un), the vector X(Un). The matrices A and D are constructed from mesh and
runtime chosen interpolation schemes. And we construct an equation for the predictor U∗.

AU∗ − [L(Un)U∗ +X(Un]︸ ︷︷ ︸
=H(U∗)

= −Dpn (5)

2



OpenFoam creates Eq.(5) by first creating the LHS in a manner which mimics the LHS of Eq.
(2):

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi , U)
+ turbulence ->divDevReff ()

);

Listing 1: LHS of the discretized momentum equation

Lets dissect Listing 1. An object UEqn of type fvVectorMatrix is constructed to solve for
the volVectorField U. fvm::ddt(Up) is a finite volume discretization of ∂U.

∂t . In the term
fvm::div(phi,U), phi = linearInterpolate(U) & mesh.Sf() is a surfaceScalarField which
denotes volume flux through cell faces. So, fvm::div(phi,U) is mimicking ∇ · (UnU), convection
of unknown momentum density U being transported by currently known velocity field Un. The
turbulence->divDevReff() is actually implemented as

fvm::laplacian(nuEff(), U) -fvc::div(nuEff()*dev(T(fvc::grad(U)))

where nuEff() represents effective viscosity which is calculated as fluid viscosity by turbulence
viscosity, νeff = ν + νT . The second term I believe represents explicit treatment of devioteric stress
tensor which should have been vanished in incompressible flows, right?

The equation is closed by constructing the rhs of Eq. (5) using current value of pressure pn by
the command fvc::grad(p):. Before that coefficient matrix UEqn is also relaxed. I don’t know the
purpose of that at this point. TODO: Check why and how of EUqn.relax().

UEqn.relax();

if (piso.momentumPredictor())
{

solve(UEqn == -fvc::grad(p));
}

The solve(...) function solves for U. Don’t forget, this isU∗ in our abstraction. To get equation
in the form of Eq. (4), we will need to extract A and H from UEqn. These can be done (but not
done this way) as

volScalarField a = UEqn.A();
volScalarField H = UEqn.H();

2.2 PISO Correction loop

// --- PISO loop
while (piso.correct())

{

3



Recall that we have only have a predicted value U∗. The momentum equation can be rephrased
as

Un+1 =
H(Un+1)

A
− D

A
pn+1 (6)

The PISO corrector loop approximates H(Un+1) ≈ H(U∗) to get

Un+1 =
H(U∗)

A
− D

A
pn+1 (7)

The field H(U∗)
A is constructed as

volScalarField rUA = 1.0/UEqn.A();
volVectorField HbyA = rUA*UEqn.H();

Eq. (7) is substituted in Eq. (3) to get an equation for pn+1

CMD

A
pn+1 =

CM

A
H(U∗) (8)

Eq. (7) is implemented and solved for pn+1

phi = (fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, U, phi); // TODO: This is not fully understood

// I think by most Foamers

adjustPhi(phi, U, p); // TODO: check its usage as well

// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{

// Pressure corrector

fvScalarMatrix pEqn
(
fvm::laplacian(rUA, p) == fvc::div(phi)
);

pEqn.setReference(pRefCell, pRefValue);
pEqn.solve
(
mesh.solutionDict().solver
(
p.select(piso.finalInnerIter())
)
);

4



if (piso.finalNonOrthogonalIter())
{

phi -= pEqn.flux();
}

}

#include "continuityErrs.H"

and Un+1 is updated using Eq. (7)

U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();

Because the equations are non-linear, the newly obtained Un+1 are used to create new H(Un+1),
which further feds into the equation for pn+1. Process repeats till convergence is reached.

} // end PISO loop

And solution is updated and recorded after convergence in PISO loop.

turbulence->correct(); // solve for turbulence model
// to get nut

runTime.write(); // write converged solution on files
} // end rutime while loop loop

3 Exercise

1. [TODO] Conduct a numerical experiment to investigate the issues that arise when trying to
solve Eqs. (3)-(4) simultaneously.

2. [TODO] I think, for incompressible flows, the devioteric stress tensor operation of velocity
field need not be present. Study a case by removing that term and see whether that affects
to solutions or not.

References

[1] Hrvoje Jasak. Error analysis and estimation for finite volume method with applications to fluid
flow. Technical report, 1996.

[2] F Moukalled, L Mangani, M Darwish, et al. The finite volume method in computational fluid
dynamics. Springer, 2016.

5


	Navier Stokes Equation and Finite Volume discretized equations
	PISO and its OpenFoam implementation
	Momentum predictor
	PISO Correction loop

	 Exercise

